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ABSTRACT

Neuromorphic photonics has relied so far either solely on coherent or Wavelength-Division-Multiplexing (WDM) designs for
enabling dot-product or vector-by-matrix multiplication, which has led to an impressive variety of architectures. Here, we go a
step further and employ WDM for enriching the layout with parallelization capabilities across fan-in and/or weighting stages
instead of serving the computational purpose and present, for the first time, a neuron architecture that combines coherent
optics with WDM towards a multifunctional programmable neural network platform. Our reconfigurable platform accommodates
four different operational modes over the same photonic hardware, supporting multi-layer, convolutional, fully-connected and
power-saving layers. We validate mathematically the successful performance along all four operational modes, taking into
account crosstalk, channel spacing and spectral dependence of the critical optical elements, concluding to a reliable operation
with MAC relative error < 2%.

Introduction
The explosive growth of Artificial Intelligence (AI) and Deep Learning (DL) together with maturing photonic integration
have created a new window of opportunity for use of optics in computational tasks1–5. The use of photons and relevant
optical technologies in Neural Network (NN) hardware is predicted to offer a significant boost in Multiply-Accumulate (MAC)
operations per second compared to the respective NN electronic platforms, with computational energy and area efficiency
being estimated to reach < fJ/MAC and > TMAC/sec/mm2, respectively6, 7. The pathway towards realizing this NN hardware
paradigm-shift aims to exploit the high line-rates supported by integrated photonic technologies together with the small-size
and low-power weighting function that can be offered at chip-scale4, 8. So far, the vast majority of photonic devices utilized
for weighting purposes has emphasized on slowly reconfigurable elements, like Thermo-Optic (T/O) phase shifters9, 10 and
Phase-Change Material (PCM)-based non-volatile memory structures4, 8, implying that inference applications are currently
considered as the main target within the area of neuromorphic photonics3.

Inference engines indeed require a rather static neuron architecture and a layer connectivity graph that usually gets defined
for optimally performing a certain AI task. Object tracking and image classification, for example, are typically performed via a
number of convolutional layers followed by one or more Fully Connected (FC) layers, while autoencoders require cascaded
stages of FC layers11, 12. Although convolutional and FC layers comprise critical architectural elements in almost all inference
platforms, a large set of parameters - such as the number of layers and/or neurons per layer and the connectivity graph - can
vary significantly depending on the targeted DL architecture and application. Electronic implementations may conclude to
Application-Specific Integrated Circuits (ASICs) customized for a specific inference task, but the use of GPUs, TPUs or even
FPGAs becomes unavoidable when reprogrammability and reconfigurability are required in order to utilize the same hardware
for multiple applications13.

Transferring the reconfiguration capability to Photonic (P)-NN implementations requires a platform that can flexibly
support different functional layouts over the same neural hardware. Programmability in photonics has made significant
progress over the last years14–16 and programmable Photonic Integrated Circuits (PICs) have been shown to offer important
advantages towards releasing cost-efficient, flexible and multi-functional photonic platforms that can closely follow the concept
of electronic FPGAs17. In this effort, it has also been highlighted that just the use of slowly reconfigurable 2×2 Mach-Zehnder
Interferometric (MZI) switches within an appropriate architectural scheme can yield a large set of circuit connectivities and
functionality options14, 15. However, the idiosyncrasy of NN architectures has to proceed along alternative functionalities that
are currently still not offered by programmable photonic implementations. Although weight value reconfiguration can be indeed
offered by state-of-the-art photonic weighting technology4, 8–10 and a shift in perspective towards programmable activation
functions has also started to emerge16, 18, 19, neuromorphic photonic architectures demonstrated so far are not supporting any
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Figure 1. (a) Schematic representation of PPNN showing M laser diodes (LDs), a MUX, a 3dB X-splitter followed by a bias
branch (Wb) and a reconfigurable OLAU encompassing 1-to-N splitting stage, input (Xn) and weight (Wn) modulator banks and
an N-to-1 combiner stage, the output of which is brought to interfere with the bias signal within 3dB X-coupler and sent to the
DEMUX. Closer look into (b) 1-to-N splitting and (d) its π-rotated N-to-1 coupling stage. Zoom-in into the (c) bias branch
wavelength selective weights and phase modulators and (e) an axon of the OLAU consisting of switches for signal routing and
modulators for inputs (xn,m) and weights (wn,m).

reconfiguration mechanism for their linear neuron stages. PNNs have so far progressed along two main architectural categories
for realizing linear neural layers, where Wavelength-Division-Multiplexed (WDM) and coherent platforms seem to follow
discrete and parallel roadmaps: (i) incoherent or WDM-based layouts, where a discrete wavelength is used for each axon within
the same neuron3, 4, 20, and (ii) coherent interferometric schemes, where a single wavelength is utilized across the entire neuron,
exploiting interference between coherent electrical fields for weighted sum operations9, 10.

Here, we present a novel architecture that can efficiently combine WDM and coherent photonics towards supporting
Programmable PNNs (PPNNs) with four different linear neural layer operational modes. Starting from our recently proposed
dual-IQ coherent linear neuron architecture21, that has been recently demonstrated also as a PIC with the ground breaking
compute-rates per axon22, 23, we extend single neuron architecture by employing multiple wavelength channels and respective
WDM De/Multiplexing (DE/MUX) structures towards creating multi- and single-element fan-in (input) and weight stages per
every axon. Programmability is then enforced through 2×2 MZI switches that can flexibly define the connectivity between
fan-in and weighting stages, allowing in this way for software-defined neural layer topologies. We formulate the mathematical
framework for this programmable neuromorphic architecture and proceed with an in-depth study of the anticipated performance
impairments originating from the use of multiple wavelengths within the same interferometric arrangement. We conclude to
a simple mechanism for counteracting wavelength-dependent behaviour of modulators and phase shifters at the fan-in and
weighting stage, respectively, showing that our programmable layout performs equally well for any number of employed optical
channels in any of the 4 distinct modes of operation, with all supported neurons always offering a relative error lower than 2%
as long as the inter-channel crosstalk is kept at typical values of less than −20dB.

PPNN architecture and operating principle

In our recent study21 we have demonstrated how coherent linear neurons, offering dot-product functionality, can be constructed
of IQ-modulator blocks, allowing for the sign information (encoded into the signal’s phase) to be preserved by introducing
the biasing signal, Σwixi +b, making the neuron compatible with all-optical nonlinear activation functions, fNL(·), tailored
either for electric field, or for optical power, without suffering information loss. Having the wavelength domain unexploited, we
advance our original neuron architecture in order to accommodate multiple channels and achieve parallelization as shown in
Fig. 1.

As Fig. 1(a) reveals, the backbone of our neural layer remains similar as in21 with the main differences being: (i) a single
Continuous Wave (CW) input optical signal is now replaced by M multiplexed CW signals, each centered at λm and supporting
one independent virtual neuron, and (ii) input and weight modulators are now replaced by more elaborate modulator banks
given in Fig. 1(c), (e), delimited by software-controllable switches in the case of latter. The input, multichannel signal is first
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Figure 2. (a) PPNN modes of operation and the corresponding switch states. (b) Simplified CNN inspired by LeNet-5,
employed in image classification. (c) Schematic of a convolutional layer with color coded input/output pairs and (d) its
implementation over PPNN in mode #2 where each channel m corresponds to one input/output pair. (f) Schematic of an
autoencoder and (e), (g) its two FC layers implemented over PPNN in mode #3 where channels correspond to unique weight
vectors and outputs ym.

split by a 3dB X-coupler to the portion directed to the bias branch and the remaining one entering the Optical Linear Algebraic
Unit (OLAU). Within the OLAU, the signal gets further split equally in terms of power by a 1-to-N splitter, an example of
which is given in Fig. 1(b), and, after being appropriately modulated by inputs xn,m and pondered by weights wn,m, gets sent to
the N-to-1 combiner, shown in Fig. 1(d). At this stage, the output signal interferes with the bias within a 3dB X-coupler and
is forwarded to the DEMUX to generate the outputs ym. Finally, each channel m will have its own algebraic addition of the
weighted inputs with a designated bias, concluding to a total of M independent N-fan-in neurons.

Depending on the configuration of switches, an overview of which is given in Fig. 2(a), channels within a single axon from
Fig. 1(e), can be controlled either individually or by a common modulator, allowing the network to operate as:

1. multi-neuron (M independent N-to-1 neurons), allowing for an arbitrary logical interconnection graph, supporting even a
multi-layer operation by designating different neurons to different layers of the NN;

2. convolutional (M independent N-element inputs with a single kernel of size N), where all different input vectors pass
through the same set of weights, Fig. 2(d), achieving simultaneous M-fold usage of the same kernel, speeding up
convolution operation from Fig. 2(c);

3. fully-connected (FC) (single N-element input over M neurons), where a single input passes through all M available
weight sets, each of size N, allowing for full connectivity between all inputs and outputs, Fig. 2(e), (g);

4. power-saving (single N-to-1 neuron), which allows for resource conservation by powering-off the excess channels and is
particularly useful for the NNs operating in sequential manner (one neuron at a time).

A detailed mapping between the architecture from Fig. 1 and the enlisted modes of operation can be found in Section 1,
Supplementary Document, with some examples also given in Fig. 2. Convolutional and FC modes of operation are particularly
important due to their ubiquitous presence in deep NNs, especially in the widely-used Convolutional NNs (CNNs), Fig. 2(b)11.
In both convolutional and pooling layers, a unique kernel (filtering or weighting window) is applied to the inputs in a scanning
manner with a certain stride, yielding a single output value, as depicted schematically in Fig. 2(c) and implemented over PPNN
in Fig. 2(d). On the other hand, FC layer, shown implemented over PPNN in Fig. 2(e), (f), has a single set of inputs passing
through multiple sets of weights to produce the outputs and it is the main building block of autoencoders, Fig. 2(f), along with
being necessary in CNNs, Fig. 2(b). Both of these operations are time and energy consuming if approached to in a sequential
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Table 1. Input and weight matrices of the n-th axon

mode Xn Wn
#1 diag[xn,1, . . . ,xn,M] diag[wn,1, . . . ,wn,M]
#2 diag[xn,1, . . . ,xn,M] wn,0IM
#3 xn,0IM diag[wn,1, . . . ,wn,M]
#4 xn,0IM wn,0IM

manner, implying that they greatly benefit from parallelization.
Although the switches of different axons can be controlled independently, the resulting mixed type NN layer has no

application foreseen at the moment. Therefore, we assume that switches in all branches are synchronized in the following
manner SX,n = SX, SW,n = SW and SO,n = SO,∀n. The matrices encapsulating the values of the inputs, Xn, and weights, Wn, for
different modes of operation are summarized in Table 1 where IM stands for M×M identity matrix. Inputs require no more
than one amplitude modulator per value, since they are defined on the positive domain xn,m ∈ [0,1], whereas, in case of weights,
which can be both positive and negative, wn,m ∈ [−1,1], two modulators are required, one for the amplitude, which will be
proportional to the weight magnitude, |wn,m|, and the remaining for the phase, which will be carrying the sign of the weight,
ϕn,m = [1− sgn(wn,m)]π/2.

The bias branch, given in Fig. 1(c) differs from the axon branch, Fig. 1(e), in two aspects: (i) it has no input sequence
modulator(s); (ii) it has only one possible route the signal can take, with a separate control of each channels’ phase and amplitude.
The latter comes as a counteraction measure to the anticipated wavelength-dependent variation of the weight magnitudes when
a single phase- and amplitude-modulator is used in each axon of the OLAU and it also allows for compensating potentially
different phase offsets that will be accumulated by different channels within OLAU, therefore meeting the conditions for
constructive interference in the last 3dB coupler of the PNN. Bias matrix remains the same for all modes of operation and reads
Wb = diag[wb,1, . . . ,wb,M], where wb,m = |wb,m|exp(iϕb,m).

Let us assume that the optical carrier consists of M channels λm, and is represented via an M× 1 column-vector of
electric fields ELD = [ELD,1, . . . ,ELD,M]T, which are normalized such that their magnitude squared yields optical power, i.e.,
ELD,m =

√
PLD,m exp(iϕLD,m). Following the architecture given in Fig. 1 and the detailed derivation presented in Section 2 of

Supplementary Document, we find the column-vector of electric fields at the output of PPNN as

Eout =
1
2

(
eiπ/2

)1+log2 N
(

W̃b +
1
N

N

∑
n=1

WnXn

)
×ELD , (1)

where, in order to ensure constructive interference at the last 3dB X-coupler of Fig. 1(a), phase matching between the
bias and the signal coming from OLAU is performed. The former is done through W̃b = Wb exp(−iπ/2)log2 N , which de-
notes the bias branch channel-wise transfer matrix accounting for phase alignment, with its m-th element being w̃b,m =
|wb,m|exp(iϕb,m)exp(−iπ/2)log2 N . Disregarding accumulated phase shift and losses that are identical for all channels, the
transfer matrix of the PPNN, Qt, can be written as

Qt = diag[qt,1, . . . ,qt,M] = W̃b +
1
N

N

∑
n=1

WnXn , (2a)

qt,m = w̃b,m +
1
N

N

∑
n=1

wn,mxn,m . (2b)

The m-th element of Qt matrix, qt,m, given by equation (2b) for multi-neuron mode of operation (#1), reveals the underlying
principle of operation of our PPNN, demonstrating how normalized dot-product between the N-element vectors represented
across axons, [w1,m, . . . ,wN,m] and [x1,m, . . . ,xN,m], can be achieved at the m-th channel neuron output with bias w̃b,m superim-
posed to it. The reconfigurability of PPNN is concealed in equation (2a), where the choice of matrices Xn and Wn is governed
by the mode of operation according to the Table 1, leading to alternative functionalities. In convolutional mode (#2), a single
kernel as in Fig. 2(c), i.e., a single set of weights across different channels [w1,0, . . . ,wN,0], calls for common weight modulator
per axon since wn,m = wn,0,∀m, whereas the input vectors remain different across the channels, [x1,m, . . . ,xN,m], concluding to
M-fold parallelization, and consequently acceleration, of convolution operation. On the other hand, in FC mode (#3), a single
input vector [x1,0, . . . ,xN,0], calling for one input modulator xn,0 per n-th axon, is passed through multiple, channel selective,
weights, [w1,m, . . . ,wN,m], yielding full connectivity between all N inputs xn,0 and all M outputs ym, as depicted in Fig. 2(f).
Finally, in power-saving mode (#4), unique weight and input vectors, [w1,0, . . . ,wN,0] and [x1,0, . . . ,xN,0], allow for only one
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channel to be used and the remaining ones to be powered off, offering the same functionality as our dual-IQ dot-product engine
from21 without additional penalties in power consumption.

As noted earlier, equation (2b) is given for mode #1, but can be updated to any other by replacing the channel-specific xn,m
and/or wn,m, by a joint xn,0 and/or wn,0. In what follows, except when explicitly noted otherwise, we will be using xn,m and wn,m
notation for an arbitrary mode of operation for simplicity and clarity.

In certain application scenarios, such as image classification, Fig. 2(b), (c), it is convenient to choose the number of axons
as a square of the linear filter (kernel) dimension which is typically an odd number, resulting in, e.g., N = 3×3 or N = 5×5.
Some other applications may call for an arbitrary N, not necessarily a square. In this case two approaches can be adopted to
exploit the PPNN architecture from Fig. 1, bearing in mind that splitter and combiner from Fig. 1(b), (d) were engineered
assuming N to be a power of 2. First approach is straight-forward and assumes using the N needed axons and ignoring the
remaining ones that are supplementing to the closest power-of-2 number larger than N. In this case, certain amount of optical
power will be lost, but being proportional to N/2dlog2 Ne, loss will never exceed 3dB. Second approach aims to eliminate
power losses at the expense of redesigning the splitter and combiner, asserting identical phase shift along all paths resulting in
coherence preservation between the signals traveling along different axons. The algorithm for designing such splitter and the
corresponding combiner is presented in Section 3 of Supplementary Document.

Impairment Analysis

Operating PPNN in power-saving mode with a single active channel, opens the possibility to bypass the DE/MUXes in axons
and center each of the input and/or weight modulators’ transfer function to the channel’s central wavelength, leaving no room
for output degradation due to wavelength dependent properties of optical components. On the other hand, having a multichannel
PPNN (modes #1 through #3) rightfully raises a concern on whether all channels will perform in equal manner, having similar
relative error between the targeted output, given by matrix element qt,m in equation (2b), and experimentally obtained value
qe,m. The wavelength dependent loss and phase accumulation along with the crosstalk in DE/MUXes could lead to performance
degradation of some channels to a higher extent than the others, measured by increase of absolute, ∆qm = qe,m− qt,m, and
relative error, δqm = |∆qm|/qt,m, between the matrix elements. Setting the limit for tolerable relative error can be a challenging
task as the network’s error-tolerance depends on the assignment in which it is employed and on the training algorithm. As a rule
of thumb, an acceptable PPNN error should be lower than the training error, which is commonly in the range of few percent21–23.
Moreover, employing noise-aware training algorithms has proven to increase the resilience of the NN models even in the noisy
environment24, where the noise should be understood as a broad term encapsulating any randomly distributed deviation from
the targeted output. Following the above said, in this Section we set to investigate how much will the experimental PPNN
transfer matrix, Qe, deviate from the targeted one, Qt, and whether this deviation can be counteracted.

For implementing the inputs xn,c, we use Mach-Zehnder Modulators (MZMs) in our study, with c being the index of the
channel λc at which the MZM is centered. We assume that MZMs have voltage-controlled Phase Shifters (PS) in both arms
(indexed as "1/2" for upper/lower arm, respectively) and are operated in push-pull configuration with DC induced phase shifts
given as φDC,1/2 = 2πn(VDC,1/2,λ )LDC/λ and RF induced as φ1/2(±VRF,λ ) = φ0(λ )±∆φ(VRF,λ ) with φ0 = 2πn0(λ )L/λ

and ∆φ = 2π∆n(VRF,λ )L/λ where L and LDC denote the lengths of RF and DC active regions and n = n0 +∆n, with n0 and
∆n being the refractive index at zero applied voltage and its deviation when the voltage is applied. The transfer function of the
MZM is given as

tMZM(λ ) = cos{[2∆φ(λ )+φDC,1(λ )−φDC,2(λ )]/2}× exp{i [2φ0(λ )+φDC,1(λ )+φDC,2(λ )]/2} , (3)

and is tailored such that tMZM(λc) = xn,c by choosing the DC voltages (biases) which induce phase shifts separated by π ,
implying φDC,1 = φDC− π and φDC,2 = φDC. Assuming that the modulation-induced phase-variation does not contribute
significantly to the overall wavelength dependence, the MZM transfer function can be approximated by

tMZM(λ )≈ sin∆φ(λc)exp
{

i
[
φ0(λ )+φDC(λ )−

π

2

]}
. (4)

For modes of operation #3 and #4, MZM transfer function will be centered at a certain λc, i.e., optimized to deliver targeted
input xn,c at the given channel by enforcing ∆φ(VRF,λc) = arcsinxn,c and setting the argument of the exponential function
in equation (3) to a multiple of 2π . For any other channel m, the imprinted value xn,m,c will deviate from the targeted one.
Following the detailed analysis of the input modulator operation given in Section 4 of Supplementary Document, relying on the
1st order Taylor expansion of the phases φ0(λ ) and φDC(λ ) around λc, we find that the m-th channel of the n-th axon carries the
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input value given by

xn,m,c ≈ xn,c exp
(
−iξ (x)

m,c

)
, (5a)

ξ
(x)
m,c = 2

(
px +qx +

1
4

)
π

ng(λc)

n(λc)

1
λc

(m− c)∆λ1 , (5b)

where px = n0(λc)L/λc and qx = n(VDC,λc)LDC/λc stand for normalized lengths of the RF and DC phase shifters within the
MZM and are restricted to px,qx ∈N, ng is the group refractive index, and ∆λ1 = λm+1−λm denotes channel spacing (assuming
equidistant channels). Parameter ξ

(x)
m,c represents the phase shift accumulated by channel m and reveals four important facts: (i)

it does not depend on targeted xn,c value implying that the phase accumulation does not vary with the input sequence; (ii) it
does not depend on the axon index n, implying that all axons introduce the same amount of phase accumulation that can be
compensated outside the OLAU rather than within the OLAU itself; (iii) it depends on the difference between m and c implying
that all side channels of the same order have the same phase accumulation which magnitude increases with |m− c|; (iv) it
increases with the channel spacing ∆λ1.

In order to implement the weights wn,c a combination of MZM and an independent PS can be used. Depending on targeted
application, amplitude modulation can be achieved either through absorption control4, 8, 23 or by employing interferometric
modules9, 10, 22 using either T/O or E/O PSs. Aligning with the majority of reported state-of-the-art coherent layouts targeting
inference, and thus allowing slow reconfiguration rates, we choose thermally controlled PSs both within MZM’s arms and in
the PS that follows. Unlike E/O MZM, the T/O MZM cannot be operated in push-pull configuration; instead, it can be made
asymmetrical by changing the length of the waveguide(s) in one or both of its arms to achieve a built-in phase difference of 2θ

at the nominal temperature T0 and λc, or, in other words, it will be biased at 2θ -point. At any point in time, only one PS is
being used for adjusting the weight magnitude depending on the ratio of |wn,c| and cosθ . This is reflected in the electric field
transfer function of the MZM-PS system

tMZM−PS(λ ) = cos [θ − sgn(|wn,c|− cosθ)∆φ(∆T,λ )/2]× exp{i [φ(T0,λ )+∆φ(∆T,λ )/2+φ3(λ )]} , (6)

where φ(T0,λ ) = 2πn(T0,λ )L/λ is the phase accumulated in MZM at T0, ∆φ(∆T,λ ) = 2π∆n(∆T,λ )L/λ is the phase shift
due to applied differential temperature ∆T , and φ3(T,λ ) = 2πn(T,λ )L3/λ is the phase accumulated in the standalone PS.
Similar to the case of input MZM, we can neglect the contribution of ∆φ variation with the wavelength and approximate the
MZM-PS transfer function by

tMZM−PS(λ )≈ |wn,c|× exp{i [φ(T0,λ )+∆φ(∆T,λc)/2+φ3(λ )]} , (7)

taking into account that it will be centered at λc yielding tMZM−PS(λc) = wn,c, implying also φ(T0,λc) = 2pwπ and

∆φ(∆T,λc) = 2sgn(|wn,c|− cosθ)(θ − arccos |wn,c|) , (8a)

φ3(λc) =
1− sgn(wn,c)

2
π +2psπ−

1
2

∆φ(∆T,λc) , (8b)

where pw, ps ∈ N. For any channel m 6= c, staying restricted to the 1st order approximation and assuming pw, ps� 1 which is
expected in all cases of practical interest, following the detailed derivation given in Section 5 of Supplementary Document, we
find that the m-th channel of the n-th axon carries the weight

wn,m,c ≈ wn,c exp
(
−iξ (w)

m,c

)
, (9a)

ξ
(w)
m,c = 2(pw + ps)π

ng(λc)

n(λc)

1
λc

(m− c)∆λ1 , (9b)

where pw = n(T0,λc)L/λc and ps = n(T0,λc)L3/λc represent normalized lengths of the PSs within the MZM and the standalone
PS, respectively, with L and L3 being their lengths. Same conclusions enlisted earlier for ξ

(x)
m,c hold for ξ

(w)
m,c .

For signal multiplexing and demultiplexing Arrayed Waveguide Gratings (AWGs) are used, with a flat channel-wise spectral
response over the frequency band of interest. We assume that the AWG’s power transfer function is given as a parabola in
logarithmic domain, symmetrical and centered at the channel’s wavelength, and that it introduces negligible overall losses. In
linear domain, the transfer function corresponds to the far-field shape, i.e., a Gaussian function versus the wavelength25. The
crosstalk of the AWG, defined as the ratio of powers of the first suppressed channel and the pass channel, is denoted as rAWG in
linear terms, or RAWG in logarithmic (dB) domain. In what follows, we assume zero insertion loss and restrict ourselves to the
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1st order approximation where it is assumed that the crosstalk is relevant only between adjacent channels. We also assume that
the curvature of the output free-propagating region of the AWG matches the curvature of the Gaussian field (its equiphase line
in transversal plane) yielding zero-phase difference between adjacent output waveguides.

When passing through the DEMUX, channel m will be distributed not only to the m-th output port, but also to ports (m±1),
with the ratio of powers being determined by rAWG. This will cause the m-th channel in adjacent waveguides to be modulated
by input or weight targeted at channels (m±1). Subsequently, when collected by MUX, reversed process will follow, which
will gather all the signals back to the output, leading to mixing of inputs or weights belonging to the three adjacent paths, with
the appropriate coefficients. Following the detailed derivation given in Section 6 of Supplementary Document, we find that the
actual, imprinted value of the input in modes of operation #1 and #2 deviates from the targeted one as

xAWG
n,m ≈ xn,m + rAWG(xn,m−1−2xn,m + xn,m+1) , (10)

under the constrain xn,0 = xn,M+1 = 0 and with the same formalism being applied to weights in modes #1 and #3, and biases
in all modes of operation. Unlike the deviation coming from using a single modulator for multiple channels, which can be
compensated to a certain extent, the crosstalk originating from the AWG cannot be easily counteracted outside the OLAU as it
its pattern-dependent and, consequently, depends both on the index of the axon n and index of the channel m.

Having identified wavelength-dependent behaviour of the PPNN’s constituent components, its experimental diagonal
transfer matrix, Qe, can be derived based on the PPNN configuration for different modes of operation, as per Fig. 2(a) and
Table 1, following the path of the signal in Fig. 1(e), relying on equation (10) for modeling the AWG response, and equations
(3) and (6) for unapproximated input and weight modulator transfer functions. Similar as in the case of Qt in equation (2a), we
disregard the accumulated phase shift in Qe and restrain our focus only to the phase difference between the bias branch and the
OLAU and between the axons in the OLAU itself, as these lead to potential performance deterioration through impairment of
interference conditions. In order to perform phase alignment between the bias branch and the OLAU in modes of operation
which assume using a single modulator for enforcing inputs or weights to multiple channels (mode #3 for inputs and #2 for
weights), we modify the bias branch transfer matrix from W̃b to W̃bΞ

(w)
c in mode #2 or W̃bΞ

(x)
c in mode #3, where

Ξ
(x/w)
c = diag

[
exp
(

iξ (x/w)
1,c

)
, . . . ,exp

(
iξ (x/w)

M,c

)]
, (11)

with ξ
(x)
m,c and ξ

(w)
m,c being defined by equations (5b) and (9b), respectively. In this manner, channel-selective phase accumulation

originating from equations (5a) and (9a) is cancelled, as detailed in Section 7 of Supplementary Document. It should be stressed
that Qe derived based on equations (5), (9) and (10) is approximate and, even though the phase compensation is carried out
via the PSs in the bias branch, certain deviation from Qt will remain. In the forthcoming analysis, these will be quantified by
absolute, ∆qm = qe,m−qt,m, and relative error, δqm = |∆qm|/qt,m, between the experimental, qe,m, and targeted, qt,m, diagonal
matrix elements. The errors can be derived based on the expressions correlating qe,m and qt,m in Section 7 of Supplementary
Document.

PPNN performance analysis
For our case-study, we assume silicon platform, with the refractive index dependence on wavelength at different temperatures
taken from26. At λc = 1.55 µm and T0 = 293K we have n = 3.4757 and ng = 3.5997. In case of E/O modulators, unless doping
is severe and/or composite materials are used, optical properties of the undoped silicon (where the majority of light is confined)
remain the same as above, whereas the dependence of the refractive index on the voltage is assumed to be approximately linear
for the voltage ranges of interest.

Using Monte-Carlo method, we observe 104 sets of random, uniformly distributed input and weight values, chosen on
the domain xn,m ∈ [0,1] and wn,m ∈ [−1,1] and keep the bias fixed to w̃b,m = 1 in order to ensure that the information about
the sign of the sum is preserved when transitioning to the power domain. When employing PPNN in trained environment,
bias weight can take any value from w̃b,m ∈ [−1,1] imposed by the training algorithm. Following the simulation, the diagonal
matrix elements qt,m and qe,m are aggregated and 2-D scatter plots analyzed using multivariate statistical approach to determine
deviations in terms of absolute and relative error.

Figure 3 shows 2-D scatter plots for two different modes of operation, convolutional (left-hand-side) and FC (right-hand-
side), for T/O MZM biasing point θ = π/3, normalized lengths px = qx = 100 and pw = ps = 50, nominal channel spacing
∆λ1 = 0.8nm, translating to approximately 100GHz in frequency domain, and RAWG =−15dB. Phase alignment between the
bias branch and the OLAUs output has been carried out following equation (11).

In terms of magnitude of the experimental matrix element, |qe,m|, versus the targeted matrix element, qt,m, both modes of
operation show similar performance, as confirmed by Fig. 3(a), (b), when optimized for the same channel, c = 2, out of M = 4
color-coded channels in the PPNN when a single modulator is used, or, optimized for m if a modulator per channel is used.
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Figure 3. Comparison between the convolutional (#2, left-hand-side) and the fully-connected (#3, right-hand-side) mode of
PPNN operation with M = 4 channels, optimized for operation at channel c = 2, and N = 8 axons for ∆λ1 = 0.8nm and
RAWG =−15dB. Channel-wise color coded 2-D scatter plots of the targeted matrix element qt,m and (a), (b) the magnitude and
(c), (d) the argument of the experimental matrix element |qe,m| and (e), (f) the algebraic magnitude of the absolute deviation of
the experimental from targeted matrix element, sign(Re{∆qm})|∆qm|, with ∆qm = qe,m−qt,m, all with displayed univariate
kernel probability density plots on the corresponding horizontal and vertical axes of the scatter plots.

The Spearman’s rank correlation coefficient ρ in both cases given in Fig. 3(a), (b) exceeds 0.999 for all 4 observed channels,
indicating almost perfect monotonic relation between the two quantities. The univariate Probability Density Functions (PDFs)
of both qt,m and |qe,m| retain Gaussian shape, complying with Central Limit Theorem (CLT). Nevertheless, a slight downshift in
the means of edge channels’ PDFs can be observed (m = 1 and m = 4), were the side channels’ optical power gets irreversibly
lost during demultiplexing step, captured by xn,0 = xn,M+1 = 0 and wn,0 = wn,M+1 = 0 in equation (10) and its counterpart for
wAWG

n,m .
Scatter plots of the argument of qe,m versus qt,m, given in Fig. 3(c), (d), reveal that phase alignment based on the approximate

expression given by equations (5b) and (9b) yields excellent results, bringing the residual phase shifts below 0.01π rad. The
distribution of arg(qe,m) is well approximated by Gaussian owing to CLT and depends to a certain extent on the targeted matrix
element qt,m value. It can be also noticed that the edge channels (m = 1 and m = 4) suffer a shift of the PDFs as was the case
with the PDFs describing the magnitude of qe,m, arising from non-symmetrical phase shifts seen by the 1st and Mth channel.
This time, however, the shift of the mean is of different sign: positive for the 1st and negative for the Mth channel. Regardless of
means being shifted, standard deviations of the corresponding quasi-Gaussian PDFs remain similar as for the inner channels
(m = 2 and m = 3).

Finally, in Fig. 3(e), (f), we observe the algebraic magnitude of the absolute error between the experimental and the targeted
transfer matrix elements, sign(Re{∆qm})|∆qm|. The effect of mean drifting for edge channels, observed in Fig. 3(a), (b), can
now be quantified and, for all analyzed cases stays below |∆qm|< 0.06 which yields the maximum relative error of the order of
4% for edge channels. In case of inner channels, the error is centered in the proximity of 0 and, for a given ∆λ1 and RAWG stays
below 2% in > 90% of analyzed random sets.

We extend our analysis to all multichannel modes of PPNN operation according to Fig. 2(a) for ∆λ1 from 0.4 to 1.6nm
(translating to grid spacing of 50 to 200GHz) and RAWG from −40 to −5dB, accounting for M = 8 channels centered at c = 4
when a single modulator for all channels is used, and at m otherwise, aiming to determine the influence of various system
parameters on the relative error of the matrix element, δqm. Figure 4 shows mean values of relative errors over the collection of
104 analyzed samples, together with 5% to 95% confidence bounds versus ∆λ1 for AWG crosstalk of −15dB and versus RAWG
for channel spacing of 0.8nm. As observed in scatter plots given in Fig. 3, we again confirm based on Fig. 4 that edge channels
(m = 1 and m = 8) introduce similar amount of error (lines are overlapping), which is greater than the error encountered by
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Figure 4. Mean relative errors of the matrix element δqm (given in percent) with 5% to 95% confidence bounds for (a), (b)
multi-neuron, (c), (d) convolutional, and (e), (f) FC mode of operation, depending on (a), (c), (e) channel spacing for
RAWG =−15dB and (b), (d), (f) AWG crosstalk for ∆λ1 = 0.8nm.

inner channels (2 ≤ m ≤ 7), also overlapping among themselves. The underlying cause is related to the asymmetry in the
filed magnitude and phase shifts accumulated by edge channels when passing through AWG, as previously elaborated. The
important conclusion stemming from this overlap is that the number of employed channels M does not pose a challenge for any
of the PPNN modes of operation, as long as phase compensation is done within the bias branch following equation (11).

Comparing different modes of operation in Fig. 4 reveals that the mean relative error, be it higher for the edge channels or
lower for the inner ones, remains fairly similar for different modes of operation (excluding very high RAWG), having weaker
dependence on ∆λ1 than on RAWG. For RAWG =−15dB it does not exceed 4% for any analyzed ∆λ1, however, as the crosstalk
increases, the mean error shoots up exponentially, surpassing 10% for the edge channels at RAWG =−10dB and remaining
within manageable values of up to 6% for the inner ones even at RAWG = −5dB. On the other hand, there is a significant
difference in the confidence interval between the modes of operation: it is widest for the multi-neuron mode of operation, given
in Fig. 4(a), (b), and reduces for convolutional and FC modes, given in Fig. 4(c)-(f), implying that, although not common, large
errors can occur in multi-neuron case. Same evolution of the confidence interval can be seen with respect to AWG crosstalk,
Fig. 4(b), (d), (f), revealing that having more DE/MUX stages in mode #1 comparing to the remaining 2 modes of operation is
actually responsible for its sizeable spread of errors, as is expected based on the equation (10).

Looking at convolutional, Fig. 4 (c), (d), and FC mode of operation, Fig. 4 (e), (f), difference can be observed in the
confidence intervals, and to a certain extent in the mean relative error for the inner channels, indicating that convolutional mode
of operation seems to exhibit better overall performance. Yet, from architectural point of view, Figs. 1 and 2, the two are nearly
interchangeable. At the same time, our analysis shows that the normalized modulator lengths px, qx, pw and ps play marginal
role in relative error means and confidence intervals, as was expected having in mind that the accumulated phase given by
equations (5b) and (9b) is compensated by the PSs within the bias modulator bank following equation (11). The difference,
thus, comes in response to different domains of inputs and weights, i.e., the the quantities enforced jointly to all-channels and
the ones enforced on per-channel bases. Repeating the analysis from Fig. 4 for weights restricted to the same domain as inputs,
namely wn,m ∈ [0,1], confirms that the confidence intervals slightly reduce for both modes of operation and, more importantly,
become similar in magnitude. This can be explained by reducing the magnitude of crosstalk in weight modulator bank in the
FC mode of operation by halving the range of the values wn,m±1 can take in the equivalent of equation (10) for wAWG

n,m .
The study of the PPNN performance on fan-in N reveals that the mean relative errors remain similar to the ones in Fig. 4

across different N values, implying that, similar to other analyzed parameters, the number of axons does not pose a challenge to
PPNN operation. This indicates that PPNN architecture can be reliably extended into a two-dimensional arrangement, similar
to our recently proposed photonic crossbar,27, yielding K spatially separated neuron outputs. Boosted by WDM, crossbar could
support a total of K×M logical outputs, while also offering flexibility to switch between the different modes of operation,
approaching to the photonic FPGA concept.
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Conclusion
In this manuscript we present an in-situ reconfigurable coherent PNN, exploiting the wavelength domain for achieving parallel
operation of multiple neurons with flexible, user-defined interconnection graph, supporting four distinct modes of operation,
among others convolutional and fully-connected layer. We carry out a detailed analytical study of the modulator and DE/MUX
wavelength dependence, offering a simple approach for restoring the PNN fidelity through phase alignment of the bias signal,
revealing that the majority of the residual errors comes from the crosstalk in DE/MUX stages. The analytical approach is
benchmarked against Monte-Carlo simulation showing that the residual relative error typically remains within the manageable
2% range for AWG crosstalk of up to −20dB. More importantly, the PNN performance does not degrade with the increase
of number of channels or the neuron fan-in as long as phase alignment in the bias branch is carried out, supporting seamless
network upscaling, including the extension to multi-column arrangements for vector-by-matrix multiplication. The relative
error dependence on channel spacing is weak, allowing the PNN to be operated equally well in coarse and dense WDM systems.

Data Availability
The datasets generated during and/or analysed during the current study are available from the corresponding author on
reasonable request.
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